网站、软件、福利
寻找有趣好玩的产品

资料汇总 | 2021年开源SLAM算法集锦

本文转载自计算机视觉SLAM ,作者冰颖机器人@知乎。文章仅用于学术分享。

本文汇总2021年公布的SLAM相关工作,论文及视频demo可以扫描下面二维码观看、下载。

图片

1.TANDEM:Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

慕尼黑工业大学Daniel Cremers团队,实时单目跟踪稠密建图纯视觉SLAM,采用Realsense D455(深度传感器+IMU,但只用RGB)
项目地址:https://vision.in.tum.de/research/vslam/tandem
论文地址:https://arxiv.org/pdf/2111.07418.pdf
源码地址:https://github.com/tum-vision/tandem

图片

2.MonoRec :Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

慕尼黑工业大学Daniel Cremers团队,半监督单目稠密重建纯视觉SLAM
项目地址:https://vision.in.tum.de/research/monorec
论文地址:https://arxiv.org/pdf/2011.11814.pdf
源码地址:https://github.com/Brummi/MonoRec

图片

3.Range-MCL:Range Image-based LiDAR Localization for Autonomous Vehicles

波恩大学 Cyrill Stachniss团队,3D  LiDAR户外激光SLAM,采用Passion表面重建和蒙特卡洛定位框架
项目地址:https://www.ipb.uni-bonn.de/research/,https://www.ipb.uni-bonn.de/data-software/
论文地址:https://arxiv.org/pdf/2105.12121.pdf
源码地址:https://github.com/PRBonn/range-mcl

图片

4.MULLS:Versatile LiDAR SLAM via Multi-metric Linear Least Square

ETH苏黎世联邦理工学院、EPFL洛桑联邦理工学院、禾赛科技,激光SLAM
项目地址:https://baug.ethz.ch/en/,https://www.hesaitech.com/zh/,https://sti.epfl.ch
论文地址:https://arxiv.org/pdf/2102.03771.pdf
源码地址:https://github.com/YuePanEdward/MULLS

图片

图片

5.LiLi-OM:Towards High-Performance Solid-State-LiDAR-Inertial Odometry and Mapping

KIT德国卡尔斯鲁厄理工学院,实时紧耦合激光雷达惯性里程计SLAM,特征提取参考固态激光雷达 Livox Horizon 与机械激光雷达Velodyne A-LOAM( HKUST-Aerial-Robotics ),可先参考开源VINS-Fusion(https://github.com/HKUST-Aerial-Robotics/VINS-Fusion)和 LIO-mapping(https://github.com/hyye/lio-mapping)。
项目地址:https://isas.iar.kit.edu/
论文地址:https://arxiv.org/pdf/2010.13150v3
源码地址:https://github.com/KIT-ISAS/lili-om

图片

6.FAST-LIO2:Fast Direct LiDAR-inertial Odometry

FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter
香港大学张富团队,在FAST-LIO(高效鲁棒性LiDAR、惯性里程库,融合LiDAR特征点和IIMU数据,紧耦合快速EKF迭代)基础上采用ikd-Tree(https://github.com/hku-mars/ikd-Tree)增量建图,原始LiDAR点直接计算里程,支持外部IMU,并支持ARM平台。
项目地址:https://mars.hku.hk
论文地址:https://arxiv.org/pdf/2107.06829v1.pdf,

https://arxiv.org/pdf/2010.08196v3.pdf
源码地址:https://github.com/hku-mars/FAST_LIO
相关工作:
ikd-Tree: A state-of-art dynamic KD-Tree for 3D kNN search. https://github.com/hku-mars/ikd-Tree
IKFOM: A Toolbox for fast and high-precision on-manifold Kalman filter. https://github.com/hku-mars/IKFoM
UAV Avoiding Dynamic Obstacles: One of the implementation of FAST-LIO in robot’s planning.https://github.com/hku-mars/dyn_small_obs_avoidance
R2LIVE: A high-precision LiDAR-inertial-Vision fusion work using FAST-LIO as LiDAR-inertial front-end.https://github.com/hku-mars/r2live
UGV Demo: Model Predictive Control for Trajectory Tracking on Differentiable Manifolds.https://www.youtube.com/watch?v=wikgrQbE6Cs
FAST-LIO-SLAM: The integration of FAST-LIO with Scan-Context loop closure module.https://github.com/gisbi-kim/FAST_LIO_SLAM
FAST-LIO-LOCALIZATION: The integration of FAST-LIO with Re-localization function module.https://github.com/HViktorTsoi/FAST_LIO_LOCALIZATION

7.R3LIVE:A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package

香港大学张富团队,在R2LIVE(FAST-LIO与VIO)基础上,LiDAR、惯导、视觉多传感器融合SLAM
项目地址:https://mars.hku.hk/
论文地址:https://arxiv.org/pdf/2109.07982.pdf
源码地址:https://github.com/hku-mars/r3live
相关工作:

数据集:https://github.com/ziv-lin/r3live_dataset

R2LIVE: A robust, real-time tightly-coupled multi-sensor fusion package.https://github.com/hku-mars/r2live
FAST-LIO: A computationally efficient and robust LiDAR-inertial odometry package.https://github.com/hku-mars/FAST_LIO
ikd-Tree: A state-of-art dynamic KD-Tree for 3D kNN search.https://github.com/hku-mars/ikd-Tree LOAM-Livox: A robust LiDAR Odometry and Mapping (LOAM) package for Livox-LiDAR.https://github.com/hku-mars/loam_livox
openMVS: A library for computer-vision scientists and especially targeted to the Multi-View Stereo reconstruction community.https://github.com/cdcseacave/openMVS
VCGlib: An open source, portable, header-only Visualization and Computer Graphics Library.https://github.com/cnr-isti-vclab/vcglib
CGAL: A C++ Computational Geometry Algorithms Library.https://www.cgal.org/,https://github.com/CGAL/cgal

图片

8.GVINS: tightly coupled GNSS-visual-inertial fusion for smooth and consistent state estimation 

香港科技大学沈邵劼团队,之前开源VINS-Mono(https://github.com/HKUST-Aerial-Robotics/VINS-Mono),VINS-Fusion(https://github.com/HKUST-Aerial-Robotics/VINS-Fusion),GVINS是基于GNSS、视觉、惯导紧耦合多传感器融合平滑一致状态估计。
项目地址:https://uav.hkust.edu.hk
论文地址:https://arxiv.org/pdf/2103.07899.pdf
源码地址:https://github.com/HKUST-Aerial-Robotics/GVINS
相关资源:http://www.rtklib.com/ 系统框架及VIO部分采用VINS-Mono,相机建模采用camodocal(https://github.com/hengli/camodocal),ceres(http://ceres-solver.org/)优化。 
RTKLIB: An Open Source Program Package for GNSS Positioning,An Open Source Program Package for GNSS Positioning

9.LVI-SAM:Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

MIT麻省理工学院TixiaoShan(之前开源LIO-SAM,https://github.com/TixiaoShan/LIO-SAM),激光、视觉、惯性紧耦合多传感器融合SLAM,里程计建图系统层联合LIO-SAM与Vins-Mono优势,依赖与ROS、gtsam、Ceres库。
项目地址:https://git.io/lvi-sam,https://dusp.mit.edu/,https://senseable.mit.edu/,https://www.ams-institute.org/
论文地址:https://arxiv.org/pdf/2104.10831.pdf
源码地址:https://github.com/TixiaoShan/LVI-SAM

图片

图片

10.DSP-SLAM:Object Oriented SLAM with Deep Shape Priors 

伦敦大学,基于ORB-SLAM2,面向对象语义SLAM
项目地址:https://jingwenwang95.github.io/dsp-slam
论文地址:https://arxiv.org/pdf/2108.09481v2.pdf
源码地址:https://github.com/JingwenWang95/DSP-SLAM

图片

11. UV-SLAM: Unconstrained Line-based SLAM Using Vanishing Points for Structural Mapping  

KAIST韩国科学技术院,采用消隐点实现无约束线特征结构化建图,克服传统线重投影测量模型中仅利用 Plücker坐标线法向量。
论文地址:https://arxiv.org/pdf/2112.13515.pdf
源码地址:https://github.com/url-kaist/UV-SLAM,源码即将上传
相关研究:Avoiding Degeneracy for Monocular Visual SLAM with Point and Line Features
ALVIO: Adaptive Line and Point Feature-Based Visual Inertial Odometry for Robust Localization in Indoor Environments,源码未上传https://github.com/ankh88324/ALVIO

图片

图片

12. Autonomous Navigation System from Simultaneous Localization and Mapping

克拉克森大学, 基于slam室内导航软件架构,应用于智能轮椅
项目地址: 无
论文地址:https://arxiv.org/pdf/2112.07723.pdf
源码地址:https://github.com/michealcarac/VSLAM-Mapping

图片

13.MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment

爱丁堡大学、旷视科技,大规模BA算法 ,GPU分布式计算
项目地址: 无
论文地址:https://arxiv.org/pdf/2112.01349v2.pdf
源码地址:https://github.com/MegviiRobot/MegBA

图片

14. Fast Direct Stereo Visual SLAM

明尼苏达大学,快速准确立体视觉SLAM,不依赖于特征探测与匹配。作者从单目DSO扩展到双目系统,通过3D点最小光度误差优化双目配置尺度。
项目地址: 无
论文地址:https://arxiv.org/pdf/2112.01890.pdf
源码地址:https://github.com/IRVLab/direct_stereo_slam
相关工作:Direct Sparse Odometry,A Photometrically Calibrated Benchmark For Monocular Visual Odometry,https://github.com/JakobEngel/dso

图片

15. MSC-VO: Exploiting Manhattan and Structural Constraints for Visual Odometry

巴利阿里群岛大学,基于RGB-D视觉里程计,融合点与线特征,结构化约束。
项目地址:无  
论文地址:https://arxiv.org/pdf/2111.03408.pdf
源码地址:https://github.com/joanpepcompany/MSC-VO

图片

论文及视频demo可以扫描下面二维码观看、下载。

图片

赞(0) 打赏
未经允许不得转载:寻路网 » 资料汇总 | 2021年开源SLAM算法集锦

评论 抢沙发

登录

找回密码

注册